
J. Fluid Mech. (1998), vol. 373, pp. 193–219. Printed in the United Kingdom

c© 1998 Cambridge University Press

193

Modelling of concentrated suspensions using a
continuum constitutive equation

By S A M U E L R. S U B I A1†, M A R C S. I N G B E R1,
L I S A A. M O N D Y2, S T E V E A. A L T O B E L L I3‡,

AND A L A N L. G R A H A M4

1Department of Mechanical Engineering, University of New Mexico, Albuquerque,
NM 87131, USA

2Energetic and Multiphase Processes Department, Sandia National Laboratories, Albuquerque,
NM 87185, USA

3The Lovelace Institutes, 2345 Ridgecrest Drive SE, Albuquerque, NM 87108, USA
4Los Alamos National Laboratory, ESA-EPE, Los Alamos, NM 87545, USA

(Received 4 November 1996 and in revised form 18 May 1998)

We simulate the behaviour of suspensions of large-particle, non-Brownian, neutrally-
buoyant spheres in a Newtonian liquid with a Galerkin, finite element, Navier–Stokes
solver into which is incorporated a continuum constitutive relationship described by
Phillips et al. (1992). This constitutive description couples a Newtonian stress/shear-
rate relationship (where the local viscosity of the suspension is dependent on the
local volume fraction of solids) with a shear-induced migration model of the sus-
pended particles. The two-dimensional and three-dimensional (axisymmetric) model
is benchmarked with a variety of single-phase and two-phase analytic solutions and
experimental results. We describe new experimental results using nuclear magnetic res-
onance imaging to determine non-invasively the evolution of the solids-concentration
profiles of initially well-mixed suspensions as they separate when subjected to slow
flow between counter-rotating eccentric cylinders and to piston-driven flow in a pipe.
We show good qualitative and quantitative agreement of the numerical predictions
and the experimental measurements. These flows result in complex final distributions
of the solids, causing rheological behaviour that cannot be accurately described with
typical single-phase constitutive equations.

1. Introduction
Particle-laden shear flows are important in a wide variety of applications including

hydraulic fracturing technology (Clifton, Brown & Wang 1988; Unwin & Hammond
1990; Baree & Conway 1994), processing of solid-rocket propellants (Husband 1989),
ceramics and reinforced polymer composites (Givler, Crochet & Pipes 1983), and
the transport of slurries (Leighton & Acrivos 1986). Successful use of suspensions
in engineering processes often requires that a flowing suspension be supplied at a
specified location with a prescribed particle concentration. In the past, applications
involving suspensions drew heavily upon the experience of engineers to predict the
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flow behaviour and the evolution of the particle concentration profile. As applications
grow increasingly complex, design specifications become more critical and adjustments
must be made if the specifications are to be met. Ultimately, the behaviour of the
flowing suspension must be better understood in order to effectively control particle
concentrations throughout an application process.

It has long been recognized that flowing suspensions exhibit gross particle move-
ment, that is, the particles “migrate” within the flow (Karnis, Goldsmith & Mason
1966; Arp & Mason 1977; Leighton & Acrivos 1987a; Abbott et al. 1991). Here we
are considering only large Péclet number systems, where classical diffusion is neglible.
In examining these systems Leighton & Acrivos (1987b) proposed scaling arguments
which identified three causes of particle migration and diffusion, namely shear-rate
gradients, relative viscosity gradients and concentration gradients. For succinctness
we will henceforth refer to particle migration due to shear-rate gradients and particle
motion due to viscosity or concentration gradients as shear-induced migration.

In order to better understand this shear-induced migration, numerical simulations
of particles suspended in liquid flows have been carried out using several methods.
One approach is to simulate the individual motions of particles with Stokesian
dynamics (Brady & Bossis 1988). Other methods that explicitly include the effects of
suspended particles employ boundary element formulations (Ingber 1989; Tran-Cong
& Phan-Thien 1989; Karilla, Fuentes & Kim 1989). Although the present generation
of computers has made this approach a more viable one, it is still somewhat limited
in terms of the problem size which be solved.

Another approach is to model the suspension as an effective continuum. Suspension
balance models (Jenkins & McTigue 1990; Nott & Brady 1994) provide a non-local
description of suspension behaviour in terms of the particle’s velocity fluctuations.
Nott & Brady showed that a constant suspension pressure normal to the direction
of mean flow motion leads to particle migration and concentration variations in
inhomogenous flow. In yet another somewhat simpler approach (referred to herein as
the diffusive flux model), the suspension is modelled as a single continuum whereby
the scaling arguments of Leighton & Acrivos (1987b) are used to form the basis of
a nonlinear constitutive model for the particle concentration in a flowing suspension
(Phillips et al. 1992).

Within the context of the single-continuum model, an important consequence of
particle migration is that the momentum equation for the suspension flow becomes
nonlinear, since the effective viscosity of the suspension varies with particle concen-
tration. Phillips et al. (1992) used the finite difference method to study shear-induced
particle migration in wide-gap Couette devices. Similar modelling studies of Cou-
ette devices have been performed by Fang & Phan-Thien (1995), and Phan-Thien
et al. (1995) with the finite volume method. Zhang & Acrivos (1994) used the finite el-
ement method to examine shear-induced migration coupled with viscous resuspension
in pipe flows.

Phillips et al. (1992) point out a shortcoming of the single-continuum model in
that the particle concentration assumes the maximum packing value in regions of
flow where the shear rate is zero valued. The model is also known to predict particle
migration in a parallel-plate viscometer where no net migration of particles is observed
experimentally (Chapman 1990; Chow et al. 1994). Krishnan, Beimfohr & Leighton
(1996) suggest modifications to the original model of Phillips et al. which include the
effects of curvature to resolve the discrepancy noted in the parallel-plate viscometer.

For the case of steady-state suspension flow in a pipe geometry the model of
Phillips et al. (1992) predicts a concentration profile with a cusp at the pipe centre.
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Mills & Snabre (1995) present a model based upon lubrication forces between colliding
particles that specializes to the model of Phillips et al. in the problems of Couette
flow and pipe flow. In the pipe flow problem, Mills & Snabre suggest the use of
a non-local stress tensor to overcome the presence of the centreline cusp in the
concentration profile. However, this approach cannot be used in any other geometry,
and furthermore, recent experiments of concentrated suspension pipe flows (Hampton
et al. 1997) indicate that the particle concentrations do indeed become locally high
along the centreline.

In this paper, we incorporate the diffusive flux model into a finite element method
(FEM) formulation to model shear-induced particle migration in non-homogeneous
shear flows of suspensions. The purpose of the work is to create an operational
framework within which to consider new problems in fluid suspension flows, and to
identify possible limitations within this framework. Since the finite element modelling
methodology is fairly well established in the design community, it seemed appropriate
to demonstrate that general fluid suspension problems can indeed be studied using the
FEM. In conducting this study, we evaluate the methodology within a shared resource
computing environment and not on dedicated compute servers, so that computational
efficiency was not a primary consideration. With this purpose in mind, we began with
an existing, two-dimensional, Navier–Stokes, finite element computer code NACHOS
II (Gartling 1986), and modified the code in order to study some basic problems of
shear-induced particle migration in suspension flows.

We limit our attention in this paper to suspending fluids containing neutrally
buoyant particles. In the following sections, we describe the mathematical model
and the finite element formulation. Then, in subsequent sections, we apply the cur-
rent FEM formulation to several problems. First, we demonstrate the ability to
apply the FEM methodolgy to a couple of problems where analytical solutions are
known. Next we document some new experiments pertaining to suspension flows
and attempt to provide some insight into the suspension behaviour. These exper-
iments use nuclear magnetic resonance (NMR) imaging techniques to determine
non-invasively the distribution of suspended solids as the initially well-mixed suspen-
sions demix when subjected to flow conditions. Here the tested flows were designed
to be two-dimensional. Finally, we compare our numerical simulation results to these
experimental findings.

2. Mathematical formulation
We consider solid particles suspended by a Newtonian fluid. The distribution of

these particles in the suspension has a direct influence upon the velocity field, and
conversely, the velocity field has a direct influence on the movement of the particles.
In the current study, we limit our attention to neutrally buoyant suspensions. Rather
than explictly model both the particles and the fluid as distinct continuum phases, we
instead model the two-phase suspension as a single continuum.

For neutrally-buoyant particles suspended in an incompressible fluid, the conser-
vation of mass principle requires that the mass-averaged suspension velocity field be
divergence free. That is

∂ui

∂xi
= 0, (2.1)

where ui are the components of velocity.
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The corresponding momentum equation is given by

ρo

(
∂ui

∂t
+ uj

∂ui

∂xj

)
=
∂τij

∂xj
, (2.2)

where ρo is the suspension mass density, and τij is the stress tensor.
As in Phillips et al., here we assume that the constitutive equation for total stress

τij is given by the generalized Newtonian relationship

τij = −P + 2µ(φ)Dij , (2.3)

where P is the pressure, φ is the volume fraction of solids in the suspension, µ(φ) is
the effective suspension viscosity, and Dij is the deformation rate tensor.

In treating the particle suspension as a single continuum one must account for
variation in suspension viscosity with particle concentration. This variation in viscosity
is obtained as a simple correction to the solvent viscosity so that the effective
suspension viscosity µ = µrµs, where µs is the solvent viscosity and µr is the relative
viscosity of the suspension. Several researchers, most notably Krieger (1972) and
Leighton & Acrivos (1987b), have proposed empirical correlations for the relative
viscosity. We consider here the correlation of Krieger given by

µr =

(
1− φ

φm

)−1.82

, (2.4)

where φm is the maximum solid volume fraction for which the suspension exhibits
fluid behaviour.

The value of φm depends upon the uniformity of particle size, the effective mi-
crostructure of the packed configuration and the type of flow. For uniform diameter
particles the value of φm can vary over a range from φm = 0.52 (simple cubic packing)
to φm = 0.74 (face-centred cubic packing). Still other values of φm are applicable to
randomly packed particles and bimodal suspensions. In this research, we assume that
φm = 0.68 in all calculations, as in the high-shear limit value used by Krieger (1972);
however φm could be considered an adjustable parameter.

In practical flow problems, the local particle concentration varies with time and
must be known in order to evaluate the total stress. Here we introduce an evolution
equation for particle volume fraction φ as

∂φ

∂t
+ ui

∂φ

∂xi
= −∂Ni

∂xi
. (2.5)

This equation represents a balance between stored particles, the convected particle flux
and diffusive particle flux, N. Note that the momentum and concentration equations
are now tightly coupled, not only through the velocity field but also through the
concentration-dependent relative viscosity.

Several mechanisms which include Brownian motion, sedimentation, hydrodynamic
particle interactions, and gradients in suspension viscosity may contribute to the
particle flux. Neglecting Brownian motion and assuming that sedimentation is not
present due to neutral buoyancy of the particles, we model the diffusive particle flux
as

N = Nµ +Nc, (2.6)

where Nµ is the flux contribution due to spatial variations in viscosity and Nc is
the flux contribution due to hydrodynamic particle interactions. Based on the scaling
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arguments of Leighton & Acrivos (1987b), Phillips et al. (1992) proposed

Nc = −a2φKc∇(γ̇φ) (2.7)

and

Nµ = −a2φ2γ̇Kµ∇(ln µ) (2.8)

where a is the characteristic particle length (e.g. radius), γ̇ is the local shear rate, and
Kµ and Kc are empirically-determined coefficients. The particle flux considered here
is driven not only by gradients of concentration, but also by gradients of the shear
rate.

Equation (2.5) was employed by Phillips et al. (1992) to predict particle migration
in unidirectional shear flows for which the flow can be characterized by the local
shear rate. By direct analogy with one-dimensional flows, we employ a measure of
the generalized shear rate γ̇ as

γ̇ = (2DijDij)
1/2. (2.9)

3. Finite element formulation
We multiply each governing equation by a weighting function and integrate over the

volume of the problem domain Ω to obtain a weighted residual statement. Performing
an integration by parts on the momentum and concentration equations allows us
to equally distribute integration between the weighting function and the solution
variables. This enables us to obtain an alternative weak formulation (Zienkiewicz
1967) of the governing equations in which the continuity requirements of the solution
variables are reduced.

We introduce nodal basis functions for velocity, pressure, and particle concentration
to obtain the following representations:

ui = ΦTuei , P = ΨTPi, φ = ΦTφi. (3.1)

Selecting the weighting function for the momentum equation from the basis functions
used in the approximation of ui, and the weighting function for the particle volume
fraction from the basis functions used in the approximation of φ, we obtain a standard
Galerkin finite element formulation (Gartling & Reddy 1994). By requiring that the
residuals be identically zero, we arrive at the following governing weak formulations
for continuity, momentum, and particle concentration:

−
[∫

Ω

Ψ
∂Φ

∂xi
dΩ

]
uei = 0, (3.2)

[∫
Ω

ρoΦΦ
TdΩ

]
u̇ei +

[∫
Ω

ρoΦΦ
Tuej

∂ΦT

∂xj
dΩ

]
uei +

[∫
Ω

µ
∂Φ

∂xj

∂ΦT

∂xj
dΩ

]
uei

+

[∫
Ω

µ
∂Φ

∂xj

∂ΦT

∂xi
dΩ

]
uej −

[∫
Ω

∂Φ

∂xi
ΨTdΩ

]
P =

∫
Γ

ΦTτijnjdΓ , (3.3)

[∫
Ω

ΦΦTdΩ

]
φ̇+

[∫
Ω

ΦΦTuej
∂ΦT

∂xj
dΩ

]
φ

+

[∫
Ω

∂Φ

∂xj
a2

{
Kc

[
∂γ̇

∂xj
ΦTφΦT + γ̇ΦTφ

∂ΦT

∂xj

]
+Kµγ̇Φ

TφΦTφ
1

µ

∂µ

∂φ

∂ΦT

∂xj

}
dΩ

]
φ

=

∫
Γ

ΦTNjnjdΓ . (3.4)
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The above equations contain solution variables u, P , and φ which are functions of
time. In these equations, both u and φ are assumed to be continuous over the problem
domain. The equations also contain values of γ̇ and µ which are functions of the
solution variables themselves. In the present formulation we allow for explicit spatial
and temporal variation of these values within an element as

ui(xi, t) = ΦT (xi)û
e
i (t), φ(xi, t) = ΦT (xi)φ̂i(t), (3.5)

P (xi, t) = ΨT (xi)P̂i(t), (3.6)

µ(xi, t) = ΨT (xi)µ̂i(t), γ̇(xi, t) = ΨT (xi) ˆ̇γ(t), (3.7)

where the hat quantities are arrays of the solution variables evaluated at the nodes.
This formulation is able to directly accommodate boundary conditions of velocity,
traction, and particle concentration. Additionally, it is also possible to include bound-
ary conditions of apparent wall slip velocity such as suggested by Jana, Kapoor &
Acrivos (1995). Although slip conditions may indeed be important, especially at high
particle concentrations, these conditions were not employed in any of the simulations
described herein.

Since particle migration depends upon the value of the generalized shear rate γ̇, it
is important that we be able to accurately compute this quantity without increasing
the continuity requirements of ui. Use of a biquadratic Lagrangian basis function for
ui allows a bilinear representation of γ̇ within the element, but unfortunately γ̇ is often
discontinuous across elements. In our formulation we employ a technique often used
to smooth primitive variables (Lee, Gresho & Sani 1979) by which one computes γ̇
at element quadrature points and then extrapolates these values as averages to the
nodal points. The present formulation also employs a biquadratic Lagrangian basis
function for the particle concentration, thus the approximation for φ is continuous
within the computational domain.

Our two-dimensional FEM formulation differs from the three-dimensional FEM
formulation of Zhang & Acrivos (1994) in several respects. Whereas Zhang & Acrivos
employ a penalty formulation for pressure, here we employ a mixed formulation in
which pressure becomes a solution variable. The present formulation is implicit, as
opposed to the explicit formulation of Zhang & Acrivos, so that all convective and
diffusive terms are retained in the nonlinear and non-symmetric system matrix. Finally,
the governing equations are solved as a single coupled system and not as segregated
equations. In the following sections, we apply the current FEM formulation to several
problems. Mesh refinement studies were performed for all numerical results presented
to ensure the results were properly converged.

4. Numerical benchmark results
4.1. Concentric Couette

Noting that the shear rate in a wide-gap concentric Couette device varied radially
across the wide gap, Abbott et al. (1991) used the device to observe the shear-induced
particle migration of a suspension as the particle concentration evolved from an
initially uniform profile to the non-uniform steady-state profile. In these experiments,
the outer cylinder of radius Ro was held stationary while the inner cylinder of radius Ri
was rotated at a constant angular velocity. NMR images of the Couette device taken
during the development to steady state provided a means by which to determine the
extent of shear-induced particle migration in the Couette gap for various particle sizes
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Figure 1. FEM discretization for the concentric Couette problem.

and different initial concentrations. From these experiments, Abbott et al. determined
that the particle migration for unimodal suspensions depended upon the total strain
and not upon the strain rate.

For the radial geometry of the Couette device, Phillips et al. used (2.2), (2.5),
(2.6), and the Krieger model of suspension viscosity (2.4) to determine an analytic
expression for the steady-state particle volume fraction φ as

φ

φw
=

(
r

Ri

)2(
1− φw/φm
1− φ/φm

)1.82(1−Kµ/Kc)

, (4.1)

where φw is the value of φ at the inner cylinder and the ratio Kc/Kµ was experimen-
tally determined. Under the assumptions of their analysis, the steady-state particle
distribution was found to be independent of particle size.

The above expression which is transcendental in φ must be solved in conjunction
with the momentum relation and the physical constraint stating that the average
particle volume fraction

φ̄ =
2

R2
o − R2

i

∫ Ro

Ri

φr dr (4.2)

must remain unchanged in the closed system bounded by the inner and the outer
cylinder.

Phillips et al. (1992) performed numerical simulations of the transient experiments
of Abbott et al. (1991) using a one-dimensional finite difference method. Since the
concentration depends upon the total strain, they expressed their results in terms
of the number of rotations of the inner cylinder. Through a combined analysis of
the experimental data and the numerical simulation results, they determined optimal
values for their model parameters of Kc = 0.41 and Kµ = 0.62 (Kc/Kµ = 0.66) for an

initial uniform particle volume fraction of φ̄ = 0.55, with 678 µm spherical particles.
The concentric Couette problem has also been numerically modelled two-dimen-

sionally using a finite volume method. Fang & Phan-Thien (1995) have analysed
the problem on a structured grid and Phan-Thien et al. (1995) did likewise on an
unstructured grid. These finite volume analyses were pseudo-transient calculations
containing roughly 4000 unknowns and both of these analyses produced good agree-
ment with the steady-state analytic result. As a benchmark test of the present FEM
formulation, we too set out to model the Couette experiments (Abbott et al. 1991;
Phillips et al. 1992) for a concentrated suspension.

In applying the FEM to the concentric Couette problem, the device was spatially
discretized using 240 quadrilateral finite elements as shown in figure 1. The FEM
formulation includes four degrees of freedom per node, two velocity components,
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pressure, and the particle volume fraction. Thus, the discretization results in 2740
unknowns. Using this discretization, a transient analysis was then performed with the
NACHOS II code to determine the time evolution of particle concentration in the
Couette device. In this simulation, the empirical constants were taken to be Kc = 0.41
and Kµ = 0.62 as discussed above. The analysis was carried out for an initial particle
volume fraction φo of 0.55 to a time corresponding to 800 turns of the inner cylinder.
The results of this analysis are summarized in figure 2, which includes comparisons
of the computed particle volume fraction across the Couette gap with the steady-
state analytic solution and the steady-state experimental data, as well as a similar
comparison with the experimental results for 100 turns.

Prior to the completion of 100 turns, the computed concentration profile in the
Couette gap contains a region where the concentration decreases with increasing
radius. This behaviour was observed experimentally by Phillips et al. (1992) and
appears contrary to the premise of their model, since the shear rate in the gap
decreases in the radial direction. However, the model does in fact predict this non-
monotonicity during the development of the concentration profile. Particles near the
inner cylinder experience both a higher shear rate and shear rate gradient than the
particles situated further away from the inner cylinder. Thus the particle flux (2.6)
is higher near the inner cylinder, and with regard to shear-induced migration in
an initially uniform concentration, particles near the inner cylinder are in a sense
impeded by particles further from the cylinder. For fewer than 100 rotations of the
inner cylinder, this effect leads to a local decrease in the particle volume fraction
in the gap with increasing radial coordinate. As the suspension is further strained,
this localized behaviour is smoothed by concentration gradients and eventually the
concentration becomes strictly increasing with radial coordinate.

The FEM results are shown to be in good agreement with the experimental
results over the central portion of the gap region. The largest discrepancies between
experimental and FEM results occur near the inner cylinder where the numerical
results show a lower concentration than the experimental profiles. It is possible
that a concentration-dependent ratio of Kc/Kµ could alleviate these discrepancies
as it has been conjectured (Mondy et al. 1994; Tetlow et al. 1998) that the relative
importance of collision- versus viscosity-induced particle motion diminishes with
decreasing concentration. A comparison between the analytic solution, the FEM
results (800 turns) and the experiment (12 000 turns) may imply the presence of
localized wall effects which have been observed in other experiments (Hampton
et al. 1997; Tetlow et al. 1998), but are not accounted for in the present single-
continuum model.

4.2. Pipe flow

We consider here pressure-driven axial flow of a suspension through a pipe. Phillips
et al. (1992) previously derived an analytical expression for the steady-state particle
concentration for this problem in a pipe of outer radius Ro. Employing the Krieger
model of suspension viscosity, they first solved for the shear rate in the pipe, and
noted that the shear rate was largest at the pipe wall and decreased with radius before
vanishing at the pipe centreline. Using this shear rate, they were then able to derive
an expression for the steady-state particle concentration

φ

φw
=
Ro

r

(
1− φw/φm
1− φ/φm

)1.82(1−Kη/Kc)

, (4.3)
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Figure 2. Particle distribution in the concentric Couette device for φo = 0.55.

where φw is the particle volume fraction at the pipe wall. The value of φw was
determined by assuming that the average particle volume fraction must remain
unchanged so that

φ̄ =
2

A

∫ R0

0

φr dr, (4.4)

where A is the cross-sectional area perpendicular to the flow direction. Since the
shear rate decreases with radius, the Phillips solution for pipe flow predicts that
the suspension particles will migrate toward the pipe centreline where the particle
concentration reaches a value φ = φm. Thus the model predicts a distribution of
particles which includes a cusp in particle concentration at the pipe centre, a result
which has been questioned (Nott & Brady 1994; Koh, Hookham & Leal 1994). Recent
experimental evidence (Hampton et al. 1997) indicates that a spike in the particle
concentration actually does occur along the pipe axis, but the particle concentration at
the pipe centre remains slightly less than φm for moderate to concentrated suspensions,
0.20 6 φ̄ 6 0.50.

Strictly speaking, the constraint (4.4) used by Phillips applies to a system of fixed
mass and is invalid for an open flow system. Since the suspension flows through
the pipe, the constraint should instead be based upon average suspension mass flux
ρsv rather than area-averaged particle concentration. Employing a volume-fraction-
weighted suspension density, alternative constraint relations can be written for the
neutrally-buoyant suspension in terms of either particle mass flux or the suspension
fluid mass flux. Here we consider a developing pipe flow in which the flow far
upstream has a constant initial particle concentration. Under this condition, the input
flux of particles with mass density ρp is ρpφv = ρpφ̄v̄, where v̄ is the mean velocity at
the pipe inlet and can be determined based upon the initial flow rate. Then for steady
developed flow far downstream of the inlet, the constraint relation becomes

φ̄ =
2

Av̄

∫ Ro

0

φvr dr. (4.5)

Thus the steady-state particle concentration is still given by (4.3), but the value of φw
is now determined using the above constraint equation.
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Since duct flows are quite common in the manufacture of products which utilize
particle suspensions, it is important that our formulation be capable of analysing these
problems. In a Newtonian fluid flow, the velocity field would become fully developed
within several pipe diameters downstream from the inlet, but in the presence of
suspended particles, the coupled velocity and concentration profiles develop much
more slowly. From the previous work of Nott & Brady (1994), we note that the
steady-state concentration profile prevails only at a fairly long development length
ratio, L/Ro, which is roughly estimated to be on the order of

L

Ro
∼
(
Ro

a

)2

(4.6)

for concentrated suspensions (φ̄ > 0.3) where L is the particle concentration develop-
ment length, Ro is the pipe radius, and a is the particle radius. As an example, for a
2.54 cm radius pipe and suspension particles of 3175 µm diameter then L/Ro ∼ 64.

Recent experiments indicate that this development length ratio may be from one-
third to one-half of that predicted by (4.6) (Hampton 1996). Similar results were also
obtained in the numerical simulations of Phan-Thien & Fang (1996). Determining
these fully developed velocity and concentration profiles numerically is most efficiently
accomplished with codes similar to that of Zhang & Acrivos (1994) in which one
effectively marches down the pipe analysing individual sections. The alternative, and
more computationally expensive approach is to analyse the entire flow domain by
modelling a single long section of pipe. Rather than model a very long section of pipe,
we decided to model only a smaller section of the pipe and simulate the transient
evolution of a startup flow as it evolves to a steady state.

A spatial discretization of a 122 cm long pipe with radius 2.54 cm (L/Ro = 48)
was obtained using 245 axisymmetric elements resulting in 3483 degrees of freedom.
Boundary conditions on particle volume fraction include a constant value of 0.50
volume fraction maintained at the inlet and zero diffusive flux (N = 0) conditions
on particle concentration at the centreline, outer wall, and pipe exit. Zero velocity
boundary conditions are imposed at the pipe wall and a zero normal stress is specified
at the pipe exit. The zero normal stress condition at the exit serves only to specify
a datum for the normal stress level, since it is the difference in stress between the
inlet and outlet which drives the flow. We assume that from rest, a uniformly mixed
suspension of 3178 µm diameter spherical particles with initial particle volume fraction
φo = 0.50 is suddenly subjected to a parabolic velocity profile at the pipe inlet.

Although the inlet velocity condition used in our numerical simulation is unrealistic,
it allows development of the concentration and velocity profiles in a much shorter
length of pipe. At early times in the simulation the velocity field includes radial
flow components near the pipe inlet. However, our primary interest here lies in the
fully developed exiting flow which is parallel to the pipe centreline axis even at early
times. We show the computed particle volume fraction at the pipe exit in figure 3
where the numerical results are compared to the analytic steady-state solution of
Phillips et al. (1992). As expected, the computed exit concentrations are somewhat
less uniform than the analytic steady-state solution. The scaled velocity profiles,
u/umax, for the steady analytic solution, the imposed inlet parabolic profile, and the
numerical FEM solution at the pipe exit are shown in figure 4. The FEM result is
blunted when compared to the parabolic profile and is very similar in shape to that of
the steady-state result. While we have not analysed the pipe flow to its fully developed
state, we do expect in many applications that details of the developing flow and the
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Figure 3. Pipe flow particle volume fraction distribution at exit for φo = 0.50.
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development length will be important. This type of FEM anaylsis can be useful for
these applications.

4.3. Eccentric bearing simulations for a Newtonian liquid

Steady flows in both the concentric Couette device and the pipe are two-dimensional
flows which are unidirectional in nature. We now consider a benchmark problem
which cannot be reduced to a one-dimensional problem, the lubrication problem for
an eccentric bearing. This problem, which is shown schematically in figure 5, is similar
to the concentric Couette problem except that now the inner cylinder is offset from
the centre of the outer cylinder by some distance e. The eccentricity ratio is defined
as ε = e/(Ro − Ri). In this paper, we limit our attention to the case of a rotating
inner cylinder and a stationary outer cylinder. This particular flow problem has been
studied extensively in the fluid mechanics literature, both analytically and numerically.

Wannier (1950) assumed that for low Reynolds numbers the influence of fluid
inertia was neglible in the eccentric bearing. By employing a transformation to
bipolar coordinates along with a stream function approach, he was able to obtain
an analytical solution to the corresponding Newtonian fluid problem for Stokes flow.
An initial attempt by Kamal (1966) to study the effects of inertia by determining a
linearized perturbation solution for the Stokes flow problem of the eccentric bearing
proved less than successful, but nevertheless led the way for the improved and the
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Figure 5. Eccentric bearing geometry.

more complete first-order perturbation solutions of Ballal & Rivlin (1976). In these
solutions, it was shown that below some critical value of eccentricity, the primary
circumferential fluid flow is directed upon pathlines which resemble those of the
concentric Couette device but shifted toward the direction of inner cylinder offset.
For a given problem geometry, analytical solutions of DiPrima & Stuart (1972) and
of Ballal & Rivlin predict that beyond some critical value of eccentricity, the flow
will separate in the wide-gap region. This separated flow sets up a region of slow
recirculation in which the magnitude of flow velocities is roughly 1/100 of that in
the circumferential flow. Ballal & Rivlin were also able to predict the position for
the centre of the separated recirculating flow and stated that for increasing inertial
effects this centre would move in the direction of the primary flow about the rotating
cylinder.

The eccentric bearing Newtonian fluid lubrication problem has also been studied
numerically by a variety of methods. Sood & Elrod (1970) used a finite difference
method to solve the problem using the nonlinear Navier–Stokes equation. The Stokes
flow eccentric bearing problem was solved by Kelmanson (1984) who employed a
velocity stream function formulation and the boundary integral method. Using the
velocity stream function in a Galerkin formulation with B-spline basis functions, San
Andres & Szeri (1984) studied the eccentric bearing problem and were able to solve
the Navier–Stokes equation up to Reynolds number (Re = R2

i Ωρ/µ) of 80. All the
numerical solutions cited here provide general agreement with the analytical solutions
of Ballal & Rivlin (1976).

Before proceeding with the analysis of suspension flows, it is appropriate to first
perform a qualitative test of the NACHOS II code by analysing the eccentric bearing
problem for a Newtonian fluid. Two independent problems were analysed at Re = 0.09,
one for an eccentricity ratio ε = 1

3
and another for ε = 1

2
. These ratios were chosen

in order to demonstrate the two types of eccentric bearing flow behaviour, with and
without separation, which can be easily distinguished by the presence of a recirculation
zone in the separated flow case. The FEM grids used in these analyses are shown in
figure 6. Fluid flow pathlines from these respective analyses shown in figure 7 clearly
indicate the two types of flow and provide confirmation that the fluid mechanics
portion of the code has remained operational. For ε = 1

2
two additional cases at

Re = 5 and Re = 10 were considered. Figure 8 demonstrates that one of the effects
of inertia is to move the centre of rotation for the recirculating flow in the direction
of inner cylinder motion, and is again consistent with the predictions of Ballal &
Rivlin (1976). Having performed some preliminary checks of the FEM code, we now
proceed to study the eccentric bearing problem for a suspension.
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Figure 6. Eccentric cylinder analysis grids.
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Figure 7. Pathlines from the FEM simulation of eccentric bearing problem for a
Newtonian fluid for Re = 0.09.
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Figure 8. Pathlines from the FEM simulation of eccentric bearing problem for a Newtonian fluid.

5. Multidimensional particle migration
5.1. Eccentric bearing experiments

Unlike the case of the suspension flow in a concentric Couette device, no analytic
solution is available for the steady-state particle distribution in a suspension flow
between eccentric cylinders, so one must rely entirely upon numerical simulation and
experiment. Phan-Thien et al. (1995) reported earlier experiments on an eccentric
bearing test device with initial particle volume fraction of 0.50 in which NMR
images of the particle distributions were obtained for ε = 1

3
after 200, 800, and

14 000 revolutions of the inner cylinder. Also reported was the (supposed) steady-
state distribution of solids for an eccentric bearing with ε = 1

2
. These NMR images
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verified that shear-induced migration had indeed occurred in the eccentric bearing
device. For ε = 1

3
, the particle distribution after 14 000 rotations of the inner cylinder

is characterized by the formation of a particle depleted zone near the rotating
cylinder, with the particle concentration increasing circumferentially in the direction
of the stationary cylinder. The maximum particle concentration was observed over
a large portion of the wide-gap region at the stationary cylinder. Similarly, for
the case of ε = 1

2
, the solids distribution after 10 000 revolutions of the inner

cylinder also contained a particle depleted zone near the rotating cylinder, and the
particle concentration increased circumferentially toward the outer cylinder. The
highest particle concentrations were confined to a crescent shaped portion of the
wide-gap region, but now the maximum concentration occurred away from the outer
cylinder. Additionally, the introduction of a tracer particle into the suspension flow
indicated a region of very slow reverse flow in the wide-gap region.

The experiments described by Phan-Thien et al. (1995) were extended in the present
study to obtain transient concentration profiles in the apparatus with ε = 1

2
. The

suspensions were composed of polymethylmethacrylyate (PMMA) spherical particles
with a mean diameter of 675 µm, suspended in a Newtonian liquid that was composed
of a solution of three primary components: 50.27% by weight Triton x-100 (an
alkylaryl polyether alcohol from J. T. Baker), 35.66% by weight H-90,000 UCON
oil (a polyalkylene glycol made by Union Carbide), and 14.07% by weight practical
grade 1,1,2,2 tetrabromoethane (TBE). A small amount (about 0.1% of the weight of
TBE) of Tinuvin 328 (an antioxidant made by Ciba-Giegy) was dissolved in the TBE
prior to mixing the solution to retard the breakdown of TBE when the solution is
subjected to UV radiation. This solution was designed to have the same density as the
PMMA particles at the room temperature of the NMR laboratory (approximately
22◦C). The viscosity of the suspending liquid was 4.95 Pa s at this temperature. Again,
the overall solids volume fraction of the suspension was 0.50.

The inner and outer cylinder radii were 0.64 cm and 2.54 cm, respectively. The
inner cylinder was rotated at a rate of approximately 90 r.p.m. by a motor and
halted after 40, 1000, 2000, 3000, 5000, and 10 000 revolutions so that NMR images
could be taken. Because the particles were neutrally buoyant, no further movement
of the particles occurred during the imaging sequence. Although the temperature of
the suspension was controlled only by the ambient temperature of the laboratory,
no settling or rising of the suspended particles was detected over the duration of
the experiments. Moreover, no buoyancy-driven segregation was observed in NMR
images of the suspension taken before and after the suspension was allowed to remain
undisturbed overnight.

The NMR imaging techniques used in these experiments remained essentially
the same as those described by Graham et al. (1991), but new hardware upgrades
now allowed the creation of images in shorter times (static images were performed
in 4 minutes). The imager (NALORAC Quest 4400) was interfaced with a 1.9 T,
31 cm horizontal bore magnet (Oxford) and controlling hardware. Experiments were
controlled by a computer and a flexible state-device (MSC). Magnetic field gradients
in the horizontal (X), vertical (Y ), and axial (Z) directions were produced by currents
flowing in a gradient coil assembly; these gradients were used to encode spatial
information in the NMR signal. R.f. magnetic field pulses were applied through the
transmit/receive switch to the r.f. probe which also received the NMR signal. The
signal was heterodyned in phase quadrature to produce audio frequency signals which
were then digitized and stored for processing.

NMR images were taken of a 2.4 cm thick cross-sectional (X,Y ) slice of the
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eccentric bearing apparatus, perpendicular to the outer cylinder axis, and about
midway along its length in the axial direction. The fluid in this slice gave a full-
intensity signal and the particles gave no signal. The normalized value of the image
intensity was proportional to the density of the liquid-phase protons in a volume
element. Initial experiments used an external calibration to determine the absolute
value of the intensity signal corresponding to the suspending liquid. NMR images
taken near the ends of the apparatus showed no evidence of particle migration in the
axial direction, thus in later experiments the fluid fraction was sometimes calibrated
by matching the averaged intensity of the image for the initial state to the known
fluid fraction.

The in-plane spatial resolution of the image was approximately 0.2 mm. Typical
signal to noise ratio (S/N) in the concentration images was 20. To distinguish small
differences in concentration, several volume elements of the image must be averaged.
The accuracy of NMRI measurements of fluid fraction, with the (S/N) ratio increased
to 100 by averaging, is 1–3%, and the precision of the measurements is 3–5%.

Figure 9 shows the particle volume fraction across the midplane of the eccentric
bearing with ε = 1

3
for the images originally reported by Phan-Thien et al. (1995).

Similarly, figures 10(a), 10(b), 10(c) and 10(d) show the particle volume fraction
obtained from the image intensities along a horizontal line bisecting the inner rod
of the apparatus after 40, 1000, 5000 and 10 000 turns for eccentricity ε = 1

2
. Note

that the experimental values of figure 10(d) show an abrupt increase in particle
concentration at about 1.75 cm from the centre. This may be an experimental artifact
because the values reported here correspond to individual picture elements (pixels)
along the horizontal. Thus these results contain more scatter than values reported
for the concentric cylinder apparatus (figure 2) in which a number of pixel values at
equal radius from the rotating cylinder are averaged circumferentially. Figure 11(a)
shows NMR images taken in the bearing for ε = 1

2
after 40, 1000, 2000, 3000, and

5000 revolutions of the inner cylinder. The false-colour images show that dramatic
changes occur over time in the solids concentration. These NMR images contain
quantitative information as explained above.

5.2. Eccentric bearing simulations

We consider numerically the same two problems in the eccentric bearing geometry as
mentioned in the experiments described above. For both problems, the initial uniform
particle concentration is given by φ = 0.50, Ro = 2.54 cm, Ri = 0.64 cm, Kc = 0.41,
and Kµ = 0.62. For the first problem, the eccentricity ratio is ε = 1

3
, and for the second

problem, ε = 1
2
.

The first problem, ε = 1
3
, was modelled using the grid shown in figure 6(a) resulting

in a discretization having 2740 degrees of freedom. The particle concentration profiles
from this analysis are included in figure 9. The numerical results after 1500 turns
are seen to be in reasonable agreement with the experimental results recorded after
14 000 turns. The difference between the numerical results after 1050 turns and 1500
turns indicates that the numerical solutions are nearly converged to the steady state.
As expected, no region of recirculation is observed in the simulation. Phan-Thien
et al. (1995) and Fang & Phan-Thien (1995) analysed this problem using a finite
volume method and the current FEM results are consistent with their analysis.

The second probem with ε = 1
2

was numerically analysed using the grid shown
in figure 6(b) which resulted in 4201 degrees of freedom. Results obtained from the
numerical analysis are compared with the experimental results in figure 10, which
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Figure 9. Particle volume fraction along the horizontal midplane of the eccentric bearing for ε = 1
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and (a) 40, (b) 1000, (c) 5000 and (d) 6000 (computed) and 10 000

(experimental) turns of the inner cylinder.
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Figure 11. (a) NMR images and (b) numerical predictions of solids distribution after various
numbers of revolutions of the inner cylinder in the apparatus with ε = 1

2
.

displays the particle volume fraction distribution along the horizontal diameter of
symmetry. Again, there is relatively good agreement between the numerical and
the experimental results. The plot of computed particle volume fraction along the
horizontal for 6000 turns (figure 10d) indicates that the local maximum concentration
occurs away from the outer cylinder and is consistent with the experimental steady-
state measurement.

The numerically predicted series of transient concentration profiles corresponding
to the present experimental results is shown in figure 11(b). General qualitative
agreement between the computed and experimental results indicates that the current
FEM analysis with the diffusive flux constitutive model for the concentration is
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Figure 12. Particle pathlines from FEM simulation of the eccentric bearing for
ε = 1

2
and 6000 turns of the inner cylinder.

capable of following the evolution of the non-uniform concentration profile through
the transient stages. As in the case of ε = 1

3
, there is a general migration of the

particles away from the inner cylinder towards the outer cylinder and a large region
of concentrated particle phase forms in the wide gap. However, in contrast to the case
of ε = 1

3
, the maximum concentration in the bearing occurs not along the horizontal

of geometric symmetry, but at the outer cylinder in a small region along the lower
edge of the bearing. Additionally, the transition toward steady state is not as uniform
and the near symmetry that was evident in the concentration profiles for the case
ε = 1

3
no longer exists for ε = 1

2
, either numerically or experimentally.

Flow pathlines for the ε = 1
2

case after 6000 rotations of the inner cylinder calculated
from the numerical results, figure 12, verify the presence of two distinct flow regimes.
These two distinct flow regimes within the eccentric bearing must be accompanied by
a dividing streamline which denotes a demarcation between the two flow regions. The
pathlines demonstrate the asymmetry of the flow about the horizontal axis, as there
is a slight shift of the recirculation flow centre in a direction opposite to the inner
cylinder rotation. Like the suspension flow, the particle concentration distribution in
the eccentric bearing also contains two distinct distributions which correspond loosely
to the two flow regions, one in the primary flow region and one in the wide gap.

Phan-Thien et al. (1995) modelled the eccentric bearing problem for ε = 1
2

using a
finite volume method and an unstructured grid. In these simulations they were unable
to observe the recirculating flow in the wide gap. Furthermore, the model predicted
that the highest values of concentration occurred along the stationary cylinder in
the wide-gap portion of the bearing. Fang & Phan-Thien (1995) later modelled the
same problem using a finite volume method employing a structured grid. In their
simulations, they were able to observe the recirculation region at a lower initial
particle volume fraction (0.20). However, owing to numerical instabilities, they were
unable to obtain steady solutions for a particle volume fraction of 0.50.

Further study of the computed results provides additional insight into the structure
of the particle concentration distribution. In particular, we consider the magnitude
of velocity in the wide-gap region along a horizontal line directed from the centre of
the inner cylinder to the outer cylinder. In the case of ε = 1

3
, the suspension velocity

is perpendicular to this horizontal line. Additionally, both the magnitude of velocity
and the corresponding value of velocity gradient decrease monotonically moving
away from the inner cylinder. A plot of generalized shear for this flow (figure 13a)
demonstrates the correspondence between low values of generalized shear and higher
particle concentrations (see figure 9).
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Figure 13. Generalized shear rate from FEM simulation of the eccentric bearing for (a) ε = 1
3

and

1500 turns of the inner cylinder, and (b) ε = 1
2

and 6000 turns of the inner cylinder.

Similarly, for the case of ε = 1
2
, we consider the magnitude of velocity in the

wide-gap region along a line directed from the centre of the inner cylinder toward the
centre of the recirculation zone, where the suspension velocity is nearly perpendicular
to this line. Moving toward the right, away from the inner cylinder into the gap region,
the velocity field remains continuous across the dividing streamline, decreasing from
its maximum value at the inner cylinder to zero at the centre of the recirculation zone.
Thus the corresponding component of velocity gradient also decreases in magnitude
along this line segment. Proceeding along the same line beyond the centre of the recir-
culation zone, the velocity reverses direction and the magnitude of velocity increases
slightly before finally diminishing in magnitude to satisfy the no-slip condition at
the outer cylinder. The corresponding magnitude of velocity gradient first decreases
to zero and then increases to a finite value at the wall. Over nearly half of the
recirculation zone, this same basic character is repeated along radial lines extending
from the inner cylinder and terminating at the outer cylinder. These trends in the
velocity gradient lead to the presence of a narrow region in which the second invariant
of shear rate, and thus the generalized shear rate, is a local minimum as shown in
figure 13(b). This view is also supported by the numerical results in figure 11(b) since
the particle concentration continues to increase where the generalized shear rate is
low.

It is interesting to note some of the fine-scale features that are present in both the
numerical analysis and experiment (figures 11(a) and 11(b)). Before 2000 turns of the
inner cylinder, a small region of high concentration can be observed at the stationary
wall beneath the rotating cylinder in both the computed results and in the experiment.
The FEM results also include a small region of high concentration above the rotating
cylinder, but the small high-concentration region beneath the cylinder seems to extend
further from the outer wall than the one above the cylinder. The velocity within the
recirculation region is generally lower than the velocity in the primary flow on the
opposite side of the dividing streamline. However, near the intersection of the dividing
streamline and the outer cylinder, the two velocities are more closely matched, thus
approaching conditions similar to those present along the centreline of a Poiseuille
flow. That is, the generalized shear rate, γ̇, is nearly zero and attains a local minimum
in this region resulting in a high particle concentration.

The developing concentration profiles do not exhibit symmetry about the horizontal
centreline of the eccentric cylinder (figures 11(a) and 11(b)). The primary flow about
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Figure 14. Schematic of piston-driven flow.

the right-hand portion of the inner cylinder is an expansion flow beneath the cylinder
and a contraction flow above the cylinder. Thus in one case convected particles are
decelerating and in the other case convected particles are accelerating. The fact that
convected particles are decelerating as they approach the dividing streamline at the
lower portion of the outer cylinder could partially explain the local increase in particle
volume fraction. Similarly, because convected particles at the upper portion of the
bearing are accelerating one should not expect the same local increase as in the lower
portion of the bearing. Because the velocity distributions develop much more quickly
than the concentration profiles it also follows that the initial development of these
small regions of high concentration is largely influenced by particle convection while
shear-induced particle migration becomes more noticeable much later.

One additional feature appearing in both experiment and the numerical predictions
cannot be overlooked. At about 1000 turns of the inner cylinder, a thin region (green)
of lower concentration forms along the outer wall directly beyond the small high-
concentration region. This feature is visible in both the experimental and numerical
profiles up to 2000 turns, but later diminishes as the suspension concentration profile
in the wide gap approaches a more steady configuration.

5.3. Piston-driven flow experiments

A common method of displacing a fixed volume of suspension is to mechanically
move it down a pipe by means of a piston. This technique is most likely to be
used in batch processing where the exiting suspension often forms a free surface. In
applications such as injection moulding of a composite material, the quality of the
finished product may rely heavily upon the uniformity of the suspension downstream
of the piston. As a prelude to studying the more complex free surface supension
transport problem, we considered the displacement of a suspension between two
pistons as shown in figure 14.

Two identical pistons, sealed with O-rings, slid within a pipe of inner radius
2.54 cm. Depending upon the the type of NMR image desired, two different but
equivalent means of driving the suspension flow were employed: displacement of the
piston or displacement of the pipe. Displacement motion was accomplished using
a long push rod connected to a motor-driven 45 cm long screw located across the
room (thereby eliminating any possible mechanical or electromagnetic interference
between the imaging magnet and the motor). In cases where a particular section of
the suspension was to be kept in the imaging volume of the magnet, the aft piston
was held stationary and the pipe was translated at a constant velocity. Otherwise, the
push rod moved the aft piston at a constant velocity of 0.0625 cm s−1 while the pipe
was held stationary. In both cases, the forward piston was always free.

The suspending liquid was the same as described in §5.1. Different sizes of suspended
PMMA particles were used in each experiment, sieved spheres with an average
diameter of 678 µm or uniform, ground spheres with a diameter of 3178 µm. Both
suspensions had an overall volume fraction of solids of 0.50.
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Figure 15. NMR images of suspension particle volume fraction adjacent to the aft piston (right-side)
of (a) initial state, and (b) after piston travel of 2 diameters, (c) 3 diameters, (d) 4 diameters, (e)
5 diameters; and (f) the forward piston (left-hand side) in piston-driven flow after 5 diameters of
piston travel.

Initially, the forward piston was inserted in the pipe, then 30 cm of the pipe was
filled with suspension, and the suspension in the pipe was remixed. After allowing
the suspension to de-gas, the apparatus was then sealed with the aft piston. The
entire apparatus was placed coaxially in the magnet and initial NMR images were
taken along the length of the apparatus before the motor was activated. The averaged
intensity of the images depicting the initial state was normalized to the known average
concentration of the suspension. The motor-driven push rod was then allowed to
displace either the aft piston (with the pipe wall held stationary) or the pipe wall
(with the aft piston held stationary). For low rates of displacement, inertial forces
were insignificant, and since the particles were neutrally buoyant in the liquid, fluid
suspension motion ceased when the motor stopped. This permitted static images to
be recorded whenever the motor was stopped.

During the experiment, regions of suspension near the pistons were imaged in a
0.5 mm thick vertical slice along the pipe axis. Processed NMR images of the region
near the aft piston for the suspension containing 678 µm diameter particles are shown
in figure 15 for the initial state and after a piston travel of 2, 3, 4, and 5 pipe diameters.
These images indicate the development of a ‘spike’ of liquid-rich suspension forming
along the pipe axis near the aft piston. This at first seemed surprising because in
“pressure-driven” pipe flow the particles migrate toward the centreline thus forming
a liquid-depleted region near the pipe axis. In contrast to the region near the aft
piston, the imaged region near the forward piston, figure 15(f), showed no features
strong enough to be detected with the NMR technique, even after 5 pipe diameters
of piston travel.

Additional information concerning particle migration was obtained by scanning the
entire length of suspension-filled pipe to obtain a measurement of the cross-sectional
area-averaged liquid volume fraction as a function of the axial distance along the
pipe and the distance of travel. Figure 16(a) indicates that after 5 pipe diameters
of travel, there is a slight accumulation of particles near the forward piston. Note
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Figure 16. Piston flow, area-averaged axial particle volume fraction for (a) 678 µm particles and
(b) 3178 µm particles.

that due to limitations in the experimental apparatus, these profiles are not near the
steady state.

Similar experiments were also performed using a supension with the larger 3178 µm
diameter particles. It is worth noting that due to the size of these particles, it is only
possible to place a maximum of 16 particles across the diameter of the pipe. For
the suspension of larger particles, the liquid-rich spike near the aft piston was not
observed in the NMR images. It is quite possible that this spike could not be
observed because the particles were so large compared to the length scales of the
apparatus. However, axial migration could again clearly be detected, as shown in the
plot of section-averaged liquid volume fraction versus axial position along the pipe,
figure 16(b).

5.4. Piston-driven flow simulations

An axisymmetric model of the piston and pipe geometry was constructed using a grid
which resulted in 3168 degrees of freedom. The problem was modelled in much the
same way as a shear-driven cavity flow where an axial velocity boundary condition is
applied to the closed piston system at the pipe wall. That is, rather than having the
pistons move through a stationary length of pipe, the pistons are held stationary and
the walls move at a constant velocity as described in the experimental procedures.
The empirical constants Kc and Kµ in the model were the same as in the previous
problems. A transient analysis using the NACHOS II FEM code was performed of
the piston flow problem for both sizes of particles used in the experiments described
above. Whereas the experiments were only carried out for a total travel of 5 pipe
diameters, these simulations were carried out for a total piston travel of 15 pipe
diameters.

The numerical results indicate that the velocity field becomes essentially fully
developed within one piston diameter of travel. Plots of the developed velocity
field and streamlines shown in figure 17 demonstrate that the suspension motion
is essentially a recirculating flow with the flow along the pipe wall moving in one
direction and the flow near the centreline axis moving in the opposite direction. As
the suspension near the wall approaches the aft piston, its velocity first decreases and
then reverses direction, thus forming a localized region of low velocity and low shear
near the centre of the piston. Similarly, as the suspension along the centreline axis
approaches the forward piston its velocity also decreases and then reverses direction,
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Figure 17. (a) Suspension velocity field and (b) streamlines.

thus forming another localised region of low velocity and low shear near the centre
of the piston.

A series of plots showing the predicted particle concentration profile development
is shown in figure 18(a) for the 678 µm spheres and in figure 18(b) for the 3178 µm
spheres, respectively, after piston travels of 5, 10, and 15 pipe diameters. In the
light of the above observations of regions of low shear rate near both pistons, these
concentration predictions are somewhat puzzling since one might expect the particle
concentration to increase at both pistons, and not only at the leading piston. This
result can be explained by considering the core region in the flow shown by the
dashed box in the velocity field plot (figure 17). From this figure, we note that the
flow profile in this region is much like that in the pipe flow. Since we know that
suspension flows in pipes contain regions of low shear along the pipe centreline,
particles tend to migrate towards the pipe axis. Assuming that locally the particle
and fluid velocity are roughly equal, the average particle velocity will then be larger
than the average fluid velocity since the particles are concentrated in the high-velocity
region in the centre of the pipe. Hence, particles will tend to be convected towards the
front piston and away from the back piston as indicated in figure 16, where one sees
that the concentration increases monotonically moving from the aft piston toward the
forward piston. These figures indicate that the simulations predict the same trends as
the experiments. However, the experimental results in this transient region indicate
that particle migration occurs faster than predicted by the diffusive flux model.

In some portion of the flow domain away from the pistons, the development length
of the concentration profile can be approximated with the scaling arguments of Nott
& Brady (1994) given by (4.6). According to this scaling, full development of the radial
concentration profile can be expected at a distance L for (L/Ro) > (Ro/a)

2 where Ro
is the piston radius so that (Ro/a)

2 ∼ 5614 for the 678 µm spheres and (Ro/a)
2 ∼ 256

for the 3178 µm spheres. Setting L = 30 cm as the distance between the forward and
aft pistons then (L/Ro) ∼ 11.8. Thus even allowing for a multiplicative factor of two
or three discrepancy in the overall scaling, (L/Ro) does not exceed (Ro/a)

2 and full
development of the radial profile should not be expected for the aspect ratio of our
experimental geometry.

Overall, there is reasonable agreement between the numerical and experimental
results. Similar features are seen in both sets of calculated results, namely an axial
gradient in liquid concentrations and higher liquid concentration along the pipe axis
near the aft piston for the suspension of smaller particles. The predicted region of high
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(a) Particle volume fraction

Piston travel of 5 diameters

Piston travel of 10 diameters

Piston travel of 15 diameters

0.45 0.550.50

Particle volume fraction

Piston travel of 5 diameters

Piston travel of 10 diameters

Piston travel of 15 diameters

0.45 0.550.50

Figure 18. FEM predictions of particle concentration profiles resulting from piston-driven flow for
a suspension of (a) 678 µm diameter and (b) 3178 µm diameter spheres with an overall particle
volume fraction of 0.50.

particle content near the pipe axis in the vicinity of the forward piston is not observed
experimentally, however. In the case of smaller particles, it must be noted that the
changes in concentration are relatively small and the limits of the NMR imaging
technique may be a factor in the discrepancy between simulation and experiment.

Although the numerical simulations can be performed for particle suspensions
containing particles of any size, there are obvious limits to the applicability of the
present FEM formulation. In the case of piston flow with 3178 µm particles, the
particles are large compared with the flow area so that the suspension motion may
depend more upon individual particle motions than upon the averaged motion of
groups of particles, thus the continuum assumption becomes questionable. This would
be particularly true near the pistons where the suspension flow must change direction
and could partially explain the absence of fine detail in the experimental radial
particle concentration distribution. Nevertheless, the overall axial structure of particle
concentration distribution, transition from a concentrated region of particles near
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the front piston to a depleted particle region near the back piston, predicted by the
simulation is also observed experimentally.

6. Conclusions
We have shown the ability to simulate the complex behaviour of suspensions

containing neutrally-buoyant spheres in a Newtonian liquid using a Galerkin, finite
element, Navier–Stokes solver. A continuum diffusive flux model described by Phillips
et al. (1992) has been incorporated into the finite element formulation. This model
couples a Newtonian stress/shear-rate relationship with a shear-induced migration
model of the suspended particles in which the local effective viscosity is dependent
on the local volume fraction of solids. The model, which originally described particle
migration in terms of a shear rate is, for multidimensional flows, now couched in terms
of the second invariant of the generalized shear rate. The shear-induced migration
model is shown here to be surprisingly robust at capturing the essential features in
two-dimensional and three-dimensional (axisymmetric) suspension flows, such as flow
in a journal bearing and piston-driven flow in a pipe. However, the equations are
very stiff and previous failures to accurately predict journal bearing flows of highly
concentrated suspensions using this same constitutive formulation in finite volume
based codes argue for caution in its use.

To provide experimental data with which to benchmark our finite element code, we
have used nuclear magnetic resonance imaging to non-invasively determine the evolu-
tion of the solids-concentration profiles of initially well-mixed suspensions subjected
to slow flow. Multidimensional flows of suspensions result in complex final distribu-
tion of the solids, causing rheological behaviour that cannot be accurately described
with typical single-phase constitutive equations. For example, in the flow between ec-
centric cylinders, the location of the region of highest concentration depends strongly
on the eccentricity ratio. With piston-driven flow in a pipe, the particle concentration
evolves both axially and radially. Symmetry expected in Newtonian flows disappears
due to these concentration changes. Furthermore, especially at higher concentrations,
gradients in concentration can cause much more severe gradients in effective viscosity.

Given that the current computed results are most often consistent with both pre-
vious results and with experiments, it seems reasonable to expect continued advances
in numerical modelling of suspension flows. Efforts should be directed at determining
the limits of this type of continuum modelling when applied to flows of discrete
multiphase systems. For example, an improved model would include some degree of
anisotropy that is typically present in suspensions.
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